
Do Composers Think? Nigel Morgan

Thinking involves seeing the abstract structures that link our sensations and our
feelings. In the process of thinking we look for underlying patterns and compare them.
This leads to logic. 1

Thinking is the logical manipulation of symbols. 2

When you listen to music you gain sensations from that experience. At one level those
sensations are about distinctions.; in register, tempo, timbre. Composers are very
sensitive listeners because they imagine sensations. Your feelings for music demand a
greater sense of involvement than passive listening and the experiencing of sensations.
You connect to music to get a response and in turn become responsive. In composing
music, sensations and feelings are drawn together by creating patterns and structures
that become active symbols for the way you think.

Of course, those of us who write or create music are normally too busy with the current
project to spend much time considering how we are thinking. We have acquired a
technique and the basic principles of musical practice to allow us, no matter what our
sensations or feelings, to produce a result, be it in score or directly in sound.

Most composition, however, involves manipulating symbols. Staff notation is, after all,
intensely symbolic. What is a quarter note but a symbol on paper. Its meaning is tied to
so many variables. And even those who work with sound directly can't avoid decision
making and discrimination based on symbolic organisation.

The Challenge of Information Technology -

There can be little doubt that computers now challenge composers' pattern of thinking
and creating. We have an emerging generation of composers who may have only
experienced composition through the medium of IT; a serious concern for the music
educator. Serious, because we don't yet understand the effects of computer simulation
and interaction on the way we think our music through.

Computer sequencers are encouraging composers to bypass a stage of thinking and
aural imagining. We can get our 'hands' directly on simulations of sounds and
immediately engage in playful exploration. Our thinking becomes a response to
performance detail rather than a deeper association with the elements of music. Why
worry about pitch rows and rhythmic sets when your ear can lead you. This is rather like
saying to an architect - why don't you just draw a picture of my new house rather than
go to the trouble of making a survey and drawing up a set of plans!

1Rucker.R (1987) Mind Tools: the Mathematics of Information. Penquin.
2Marshall. G (1990) Advanced Students' guide to Expert Systems.
Heinemann.

With music IT the relationship between thinking and doing is changing. The sequencer-
user composer responds to 'an idea' by recording it. The idea immediately collects all the
baggage of a performance; tempo, articulation, dynamics, timbral inflection and
instrumentation.

On paper a composer's 'idea' is more likely to remain in an abstract (and symbolic) form;
as a pitch row or series or as a rhythmic cell. Rarely does even a 'motif' come 'fully-
fledged' to paper with every detail of its performance characteristics. Because the idea is
in this more abstracted state it is easier for it to be flexible to change and development.
Once recorded on a sequencer 'ideas' tend to stay put!

The MIDI sequencer is not designed to respond to the more abstract modes of
composing. There is rarely much on offer beyond transposition, inversion and
retrogression. Most sequencers have been designed to capture the inspirational
performance; to serve an area of music-making where performance characteristics -'the
feel' - is an integral building block and where interpretation is captured as part of the
composition.

There should be a warning on all MIDI sequencers: 'Can Cause Dangerous Loss of Aural
Imagination!'. When one creates a composition, it is realised in the neural level of the
mind as an n-dimensional form field, which is then mapped on thought
formalizers(language, mathematics etc). These are used to formalize it in a one-to-one
way so that it can be transferred in sequence to a receiver. Instruments and sounds are
the most outer level of the message. If one concentrates only at sound level, one cannot
create a full-bodied composition. The sound level is still very important, since at that
level the mind remaps to the music, when listening. 3

Composers who write rather than record their music often intend their work to have
more depth in its musical argument- a 'deeper' structure that has the effect of binding
the music invisibly to a thread of reason. This may or may not become apparent to the
performer and listener through handling and interpreting the 'symbols' of music notation.

This deeper structure is often a myriad of interlinking structures that provide a frame or
map onto which the drama of creativity is recorded. Just as visual artists make sketch
after sketch, experiment after experiment, in order to gain fluency in 'performing' an
idea with all its variables in images or shapes, the composer has to formalise, to contain,
to structure, to compose.

The interpretation of symbols comes from a lengthy acquisition of stylistic understanding
and practice. A performer responds to the symbolic information of a score by making
connections, decisions and relationships based on past experience and experience of the
past in both aural and physical ways. When new musical concepts and symbols appear
we expect the composer to provide verbal or musical instructions; the knowledge to
make the musical symbols understood.

If our knowledge about music can be described and worked with at a symbolic level why
are n't composers using systems that are able to manipulate the structures with which
knowledge is represented; systems that use programs that are descriptive (I would like
to see all the possibilities of this pitch series by a forward rotation of one step at a time -
I don't care how it's done) rather than prescriptive (I shall have to write a program
telling my computer exactly how to do this operation). Curiously enough, the resulting
programs are freer from errors and more amenable to change.

3Tolonen.P (1991) fax to the author 30/10/91

In order for a program to be descriptive it has to know a lot! It has to have a knowledge
base which contains all the knowledge it needs, and the ability to work with that
knowledge in a formal way. Of the computer languages which respond to these
conditions Smalltalk, Prolog, and LISP have become popular choices for an increasing
number of software developments for composers. Most of these, however, are concerned
with the creation and manipulation of sonic material rather than providing a computer
tool for symbolic composition of the abstract elements of music.

There is one 'collection of composition tools' that breaks this mould. It is written in LISP
and provides the sequencer-user composer with 'tools for the mind which encourage you
to develop your composing skills and horizons'; an 'expert-system' for composition. It's
called Symbolic Composer.

Composing with Symbols -

 l
l
l
l
l
l
l
l
l
ll

l

l

l

l

&

&

&

&

4

4

4

4

4

4

4

4

===

===

===

===

Ú58 œ| |

Œ

Ó

Ó.

a

œ| |
b

œ| |
c

ù # œ| |
d

œ| |
e

ù ù ù ù ù ù ù ù ù ù ù ù

œ_\ \

Ó

û # œ\ \ œ\ \ û # œ\ \ œ\ \ # œ\ \ ú ú ú ú ú ú ú ú ú ú ú ú ú ú ú ú

œ\ \

Ó

œ\ \ œ\ \ ú ú ú ú

bœ| |

œ_\ \ .

Œ

f

n œ| | |

g

œ_| |

a

ù bœ| |

b

œ| |

œ\ \

c

ù ù ù ù ù ù ù ù ù ù ù ù

ú ú ú ú ú ú û

l

l

l

l

Œ

®

Ó

Ó.

œ| | ü œ| | # œ| | œ| | ù # œ| | ù ù ù ù ù ù ù ù ù ù ù ù

œ| |

œ\ \

=========================

=========================

=========================

=========================

ù ù

û û
Let's look more closely at the relationship between music and symbols and in so doing
learn about the basics of LISP and Symbolic Composer.

Musical textbooks on composition invariably partition technique into work with discrete
musical elements; pitch, rhythm, timbre. Of course, composers don't, on the whole, work
with these in isolation. As one element progresses and changes it affects another, and
another. For example, a transposition in pitch affects an instrument's register and timbre.
It also is rare though for composers to immediately hear a whole composition. Mozarts
and Shostakovichs are rare phenomena. However, for the purposes of learning it's useful
to make partitions.

Here are three common routes to composing in which an element of music data is
'mapped' to larger element assuming a deep symbolic structure.

note motif

 scale

 tonality

rhythm cell

 metre

 tempo

timbre

register

instrument

It is not unusual for composers to turn this table on its head and work the other way
around, particularly in jazz, rock and commercial music. Either way 'mapping' takes
place.

In order to progress from any of these starting points composers traditionally acquire and
apply certain functions.

motif

scale

tonality

transposition
inversion
retrogression
decomposition
mirror
harmonization

rhythm

metre

tempo

augmentation
diminution
rotation
addition
subtraction

timbre

register

instrument

filter
dynamic change
ADSR change
simplification
orchestration

These functions have been augmented in recent years by the new languages of
electroacoustic music, most notably in the outline of spectro-morphology by Denis
Smalley. 4

The use of functions becomes natural and fluent to the composer who may well seek to
invent special formulas and routines that go further into mathematical procedure and
statistical probability. All these functions have to work within the constraints that we
learn and build into our knowledge base. We know that we can't transpose a phrase for a
violin below a certain pitch. Our creativity is always tempered by such constraints which
very often supply and apply a frame for structure.

Now to symbols. We could just as easily say:
e is a and q is b
It would n't take us long to learn to think rhythms like this:

 a a b a a b b b a b a rather than this:

Ruler

12 56 ll& e_

e e q e

e# e

e

n e
e q x

e e e e e
∞ _ _

q q q e q e

W

r

l[======

Our computer would be much happier using a and b than the staff symbols. However, as
musicians we know that our quaver or eighth note is a symbol for a rhythmic value which
is not only inexact in itself (suppose I put a staccato dot over it) but depends on so many
variables before its value can be defined.

4Emerson. S (1986) The Aesthetics of Electroacoustic Music. MacMillan

In MIDI, with its timing clock resolution of a quarter beat to the value 24, our eighth beat
gets a value 12. If we work entirely with step-time or quantized values this can become
an exact symbol. But, on paper or as we think, is an exact definition necessary? Surely
the idea of the eighth beat value is enough.

If we retain our symbols a and b instead of the eighth and quarter beats we can ,
through simple algebra, develop our thinking about their possible relationships and
constructs.

Writing our symbols directly into a LISP interpreter - an interpreter makes the computer
respond to every line of code you type in - the response would be:

IN: a a b a a b b b a b a
OUT: no such variable as a or b (in other words the computer needs to know how to
recognize a and b as something in particular)

If our computer could be taught to recognise musical symbols we could then do this:

IN: (setq a '(e)) - a is now always (e)
IN: (setq b '(q)) - b is now always (q)
As it stands a and b can be used in any tempo or metre. They are now in a very abstract
but symbolic form. They have become symbols for a unit of rhythm.

In LISP brackets or parentheses are used to define a list of symbols or as LISP prefers to
call them, atoms. If we now wrote them into the computer like this:

IN: a a b a a b b b a b a - the computer would respond with
OUT: (e) (e) (q) (e) (e) (q) (q) (q) (e) (q) (e)
- it would not think of the values as a rhythm. However, written like this our computer
now has a word, rhythm, which contains all the data for the combination of rhythmic
values.

IN: (setq rhythm '(a a b a a b b b a b a))

Now, every time we type in the word - rhythm - LISP will respond with:

OUT: (a a b a a b b b a b a)

The computer now knows what rhythm is even if it does n't know what a and b are! We
could then define a and b to be literally anything we like.
a could be a rhythm in itself q. x x b could be r or h

Whatever we decided as values for a and b our variable word - rhythm - would have the
same deep structure attached to it.

If we can do this sort of thing with rhythm, why not pitch. Let's take a short pitch motif. It
could be c f# d g.

If we think motif > scale > tonality we could end up with this:

motif > c f# d g
scale > G major, (any) chromatic, C lydian, Mode III (from Messaien's modes of
limited transposition) my own scale (d f# g a b c)
tonality > G major, E minor

If we convert the motif into symbols for a whole-tone scale and chromatic scale, both
starting on middle C, this would be the result:

motif > c f# d g - G major mapping > (d g e a)
motif > c f# d g - C chromatic mapping > (a g c h)

In LISP we would set out our motif and its tonality like this:

IN: (setq motif '(d g e a))
IN: (setq tonal (activate-tonality (major g 5)))

As the motif is symbolic it can be applied or mapped to any scale or tonality. It can also
be developed and transformed using all those functions listed earlier, and a few more
besides! Here is part of the list:

• compress, inverse, mirror, repeat, scale, scroll, separate, shift,
transpose, trim
- and with a second motif:

• mix, remove, remove-pattern, find-common, transform

The most fascinating functions of all are in fact from symbol generators. These create
new symbol patterns using recursive symbol definitions. Recursion is the ability of a
piece of information or 'object' to recur by constantly going back on or 'calling' itself. If
that material is defined in particular and simpler ways the recurrence does not end up
being a straight repeat or loop. A pattern is generated which can explain a great deal
about the nature and structure of our information or object. It can be used to solve a
problem in terms of itself. 5

5Friedman. D & Felleisen. M (1987) The Little LISPer. MIT Press

The best analogue for recursion is the fractal pattern. Fractals are those wonderful
graphic images that appear to resemble natural phenomena. When applied to musical
elements such as melody, rhythm and dynamics a similar 'natural' quality can be
obtained.

Symbolic Composer has a number of symbol generators that can create the most elegant
fractal patterns with musical material. Let's explore the potential of our motif with one
such generator.

First, we have to make some definitions. These outline particular relationships between
certain notes inside (and outside if you wish) the motif. We make associations between
pitch symbols like this:

IN: (defsym a' (d e))

This says symbol a is always associated with symbol d and e. If you were to play a in
your recursive variations you would need to play d and e to follow it - always!

IN: (defsym d '(c b a))
IN: (defsym b '(a b))
IN: (defsym e (d b e))

Now, we can ask the computer to provide us with recursive definitions of a particular
symbol for any number of recursions like this:

IN: (listdef a 3) IN: (listdef a 2) IN: (listdef a 1)
OUT: a OUT: a OUT: a
 d d d
 c c e
 b b
 a a
 b e
 a d
 d b
 e e
 e
 d
 c
 b
 a
 b
 a
 b
 e
 d
 b
 e

Instantly our motif sports an amazing amount of new material - and we have only
defined a!

Music and Numbers-

Musical elements can be described as easily in numbers as in symbols. Just as there are
special recursion generators that work with symbols, there are vector generators that
work with real numbers.

The term vector is used in mathematics to distinguish between two classes of
measurement. If we are measuring temperature, mass or speed we use one system of
units, scalars. The second system, vectors, covers measurements involving a magnitude
and a direction, such as force, acceleration, or velocity.

In Symbolic Composer there are numerous generators that produce vector patterns.
These vectors can be mixed, filtered, amplified, modulated, quantized - yes, the
terminology is already familiar to those of us who work with synthesisers. There is, in
fact, an on-board digital synthesiser containing an unlimited number of sine, ramp,
triangle, square and noise generators along with digital mixers, filters and modulators.
Each oscillator has controls of volume, frequency, modulation depth and phase angle.
Although it will be a while before this synthesiser is able to be used for sound itself, it
can be used to express and model musical elements in mathematical and acoustical
procedures. Here is an example:

I have a chord sequence; Caug7, F#aug9, Eminmaj7. I want to create a melody and a
rhythm out of each chord. A melody doesn't seem that hard. I could just collect the notes
of each chord together and find a sympathetic scale, but a rhythm....

Suppose I could work out the sum of the oscillating frequencies of each chord in terms of
a sine wave. With the resulting numbers could I create both melody and rhythm? Here is
how it's done in Symbolic Composer.

Remember how the word rhythm was defined in the last section. It defined a structure
whose ingredients, a and b, could have values that were variable. We need to define our
first chord in this way.

IN: (setq chord1
 (vector-to-symbol a l
 (gen-sin-chord '(c 3 e 5 g# 5 a# 5) 30)))

OUT: (a f g h c c d e f a j i l d e f f a c c a b c d e f j f l f)

The mathematical calculation is done with gen-sin-chord, followed by the chord tones
and the number of samples from the sine wave oscillation. The calculation is then
converted into a range of symbols, a to l in this case, with the vector-to-symbol
function. It can then be mapped onto any musical scale with activate-tonality.

Now for the rhythm:

IN (setq rhythm1
 (vector-round 24 96
 (gen-sin-chord '(c 3 e 5 g# 5 a# 5) 20)))

OUT: [24 36 38 76 45 89 67 23 56 24 45 67 78 26 72 45 36 78 92 65]

Again the calculation is by gen-sin-chord, vector-round taking the output of the
calculation and rounding or scaling it between the numbers 24 and 96 (semiquaver and
crotchet in the sequencer tick values I intend to use).

Any mathematical function or information structure can be expressed to control musical
elements. Symbolic conversion can go either way, symbols into vectors, vectors into
symbols. What before may have seemed an impossible or improbable source of musical
material can now be within a composer's reach. The most complex musical forms based
on the mathematics of chance and probability (stochastic music)as expressed by Iannis
Xenakis are accessible.6 Those working with pitch classes in twelve-tone composition
can explore two-dimensional array structuring and other such algebraic exotica found in
the music and writings of Milton Babbit7 and Charles Wuorinen 8.

This is the tip of a very large iceberg that may sink your current preoccupations with MIDI
sequencers and bring to the surface fascinating discoveries about the way you think
when you compose. It will allow you to learn, whilst making music, a computer language
for the 21C; a language that is flexible and intrinsically simple enough for you to build in
your own functions and libraries of material; a language that responds to composers as
well as programmers. Think about it!

6Xenakis. I (1972) Formalized Music. Indiana University Press.
7Babbit. M (1973) Since Schoenberg . Perspectives of New Music.
8Wuorinen. C (1979) Simple Composition . Longman

Symbolic Composer has been developed for the Atari and Apple
Macintosh computers. The system requires a minimum of 4 megabytes of
RAM, a hard disk and a MIDI sequencer or scorewriter able to read
standard MIDI files.

A Hypercard stack Introducing Symbolic Composer has been prepared.
This gives an interactive overview of the system's architecture and
functions.

Symbolic Composer is available from Tonality Systems, Veerstraat 55/1,
1075 SN Amsterdam, Netherlands. Tel/fax +31-20-6757-993. Contact:
Peter Stone.

Tonality Systems in the UK are represented by IMPAC Consultants
18 Park Avenue, Denby Dale Road, Wakefield, West Yorkshire, WF2 8DS
Tel: 0924 383017. Fax: 0924 291008. Contact: Nigel Morgan

ZONE Distribution are currently making the Atari version configured as
a KCS MPE Module available to registered Dr.T users. Zone Distribution,
Unit 6/70 Eurolink Business Centre, 49 Effra Road, London, SW2 1BZ.
Tel: 071 738 5444. Contact: Mike Partridge.

